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Phonon dispersion relations are presented for carbon nanoribbons along multirow structures of hexagonal
rings with zigzag and armchair edges. The dispersions are compared with the �K and �M dispersions of
graphite as a function of ribbon width m. The force constants are obtained from zone folding for those of
polycyclic aromatic hydrocarbons �PAHs� based on a transferable force-field model �MO/8 model�. The vibra-
tional mode patterns at the � point are calculated to be longitudinal or transverse in zigzag nanoribbons. All of
the normal modes are categorized into the following four groups. �1� The acoustic branches which converge to
the origin at � point allow estimation of the group velocity from their slopes. �2� The acoustic harmonics
display systematic vibrational patterns with nonzero phase relations in the width direction. The number of
nodes in amplitudes, k=1−m, represents dispersions in the width direction. �3� The optical branches which are
commensurate with the multirow structures are optical fundamentals, whereas those incommensurate are op-
tical harmonics. Both display systematic frequency changes with respect to the number of nodes �k� and ribbon
widths �m�. The optical harmonics of zigzag ribbons at � point shift in proportion to the inverse of ribbon
width 1 /m, whereas the acoustic harmonics depend on 1 /�m. �4� The CH vibrations are less dispersive than
these CC vibrations. The CH out-of-plane modes are characterized by strong infrared intensities, and their
frequencies are calculated to be higher in zigzag ribbons than in armchair ribbons. This order is in line with the
general tendencies for PAHs with solo and duo CH bonds. Hydrogenated and dehydrogenated nanoribbons are
calculated to show similar phonon dispersions for their carbon networks. Phonon densities of states �DOSs� are
compared between the nanoribbons and PAHs with particular shapes. Prominent DOS peaks are uniquely
obtained for zigzag nanoribbons and linear PAHs at �400 and 1400 cm−1. Complete selection rules are given
for the vibrational transitions in zigzag and armchair nanoribbons according to the irreducible representations
for the primitive unit cells.
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I. INTRODUCTION

The nanoscale structures of hexagonal sp2 carbon net-
works, such as carbon nanotubes and graphene layers, have
been studied extensively over the last decade. Structural de-
terminations using transmission electron microscopy and
scanning tunneling microscopy, and spatially resolved spec-
troscopy focusing on electronic and vibrational levels at par-
ticular positions have become possible.1,2 The microfabrica-
tion of the nanoscale carbon networks has also been
demonstrated using lithographic procedures3 or voltages on a
tips of scanning tunneling microscopes,4 showing prospects
for carbon-based electronics. In any carbon-based conductor,
the motion of valence electrons will create significant
changes in equilibrium structures and give rise to electron-
phonon coupling �EPC�. Therefore, the vibrational properties
are of fundamental importance for electron transport in
carbon-based conductors.

Upon going toward smaller structures, carbon networks
will become close to molecules. The nanoscale materials are
expected to possess the dual properties of infinite lattices and
molecules. The Bloch theorem requires the wave functions to
be periodic in an infinite lattice, whereas truncation in the
translational symmetry imposes additional boundary condi-
tions. As a result, chemical bonds and normal modes are
affected by different conditions at inner and perimeter re-
gions, though they could display significant periodicity along
repeating structures. Indeed, the electronic and vibrational
eigenstates have been found to be localized at the ends of

carbon nanotubes5,6 or at perimeters in large polycyclic aro-
matic hydrocarbons.7,8 Thus, the physics of nanoscale sys-
tems cannot be described fully in reciprocal space, but de-
scriptions accounting for particular molecular structures are
required.

The vibrational wave functions of the crystal lattice are
well characterized in reciprocal space by the wave vector.
The phonons of graphite or carbon surfaces have been deter-
mined by wave-vector-sensitive experiments such as neutron
scattering,9 electron energy loss spectroscopy,10–12 and in-
elastic x-ray scattering.13 Optical determinations have also
been performed by infrared14 and Raman experiments.14,15

Theoretical calculations for the phonon dispersions of graph-
ite and nanotubes have been performed using force constant
fitting,15,16 tight-binding approximations,17,18 and first-
principles ab initio molecular orbital �MO� or density func-
tional theory �DFT�.19–23 The problems found for these ap-
proaches include the fact that the available experimental data
are limited to the simplest systems, and that the force-field
parameters cannot be transferred between different carbon
compounds.

The most primitive molecules comprising hexagonal car-
bon rings are polycyclic aromatic hydrocarbons �PAHs� and
their dehydrogenated analogs �graphene�. In particular, PAHs
have been studied extensively by molecular spectroscopy
experiments24–29 and quantum chemical calculations. Semi-
empirical calculations and ab initio MO30–34 or DFT35,36 cal-
culations have been performed so far, and compared with
much experimental data. These theoretical approaches are in
principle applicable to any nanoscale structure. Although
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long computational times and convergence problems in the
first-principles calculations limit the systems of interest to
benchmark molecules, molecular-spectroscopic approaches
can be performed extensively by employing semiempirical
calculations. With careful comparisons with experiments,
systematic tendencies for a number of PAHs can be investi-
gated on the same theoretical basis. It is widely accepted that
the vibrational properties of PAHs are governed by topologi-
cal connections of the � electrons of six-membered rings.
Therefore, it is of interest to study the nanoscale carbon ma-
terials with various ring topologies based on theoretical ap-
proaches connecting solid-state physics and molecular spec-
troscopy.

In this paper, we report on the phonon dispersions of car-
bon nanoribbons, which consist of one-dimensionally infi-
nite, multirow structures of hexagonal rings. The electronic
properties of carbon nanoribbons have been studied previ-
ously by tight-binding calculations,17,18 and analogous ribbon
structures have been grown experimentally on the TiC�755�
surfaces.37 However, vibrational properties are yet to be fully
determined. We aim at establishing the phonon dispersions
for carbon nanoribbons with zigzag and armchair edges us-
ing a force field model �MO/8 model� based on Hückel
theory calculations.38–42 This model incorporates effects
from long-range interactions through bond-bond polariza-
bilities43–47 and is applicable to any arbitrary PAH. It can
also be extended to carbon nanotubes by adding curvature
effects.48,49 Therefore, the zone folding of the MO/8 force
constants can give us direct connections between real PAHs
and infinite systems. The widths of nanoribbons in the range
of m=1–20 rings were studied for hydrogenated and dehy-
drogenated nanoribbons. We concentrate on the effects of the
finite widths on vibrational mode patterns and transition in-
tensities.

The main objectives discussed in this paper include the
following. �a� Demonstrate the convergence behaviors for
the dispersion curves of zigzag and armchair nanoribbons
toward the phonons of graphite by increasing ribbon widths
�Secs. III A and III D�. �b� Calculate the evidence for sys-
tematic tendencies in vibrational mode patterns, especially
the nodes of amplitudes in the width direction. Vibrational
modes at the � point are classified into four groups. The G
modes are compared with those of size-selected nanotubes50

and theoretical data16,19–23 �Secs. III B and III C�. �c� Study
the edge-localized modes in connection with infrared and
Raman activities, and comparisons of the density of states
between nanoribbons and PAHs with particular perimeters
�Secs. III E–III G�. �d� For completeness, computational de-
tails and optical selection rules are given in the Appendixes.

II. CALCULATIONS

The primitive lattice vectors a1 and a2 are defined for the
hexagonal lattice, as shown in Fig. 1�a�. It is commonly
known that the helicity of carbon nanotubes is specified by
coefficients for a1 and a2 in the chiral vector Ch,51,52

Ch = n1a1 + n2a2 = �n1,n2� �n1,n2: integers� . �1�

We define a carbon nanoribbon as a planar graphene which
extends infinitely in the direction perpendicular to Ch. Note

that the carbon atoms at both ends of Ch are double counted
in nanotubes since they coincide with each other. Table I
presents relations between two special helicities for nano-
tubes and nanoribbons. The �n ,n� and �n ,0� nanotubes are
terminated by armchair and zigzag edges, respectively,
whereas the nanoribbons that can be rolled up to form these
nanotubes possess zigzag and armchair edges in the repeat-
ing direction, respectively. The perimeters of nanoribbons
can be hydrogenated or dehydrogenated, and these are con-
nected with PAHs and graphenes. The number of honeycomb
rows is given by m in brackets �Table I�, where m is equal to
2n or n in �n ,n� zigzag or �n ,0� armchair ribbons, respec-
tively. Figure 1�b� shows the primitive unit cells in nanorib-
bons by bold lines. The number of atoms in the unit is 2m
+4 in zigzag nanoribbons and 4m+8 in armchair nanorib-
bons.

TABLE I. Representations for carbon nanotubes and nano-
ribbons.
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FIG. 1. Definitions for �a� primitive unit vectors a1 and a2 and
�b� primitive unit cells �bold lines� for zigzag and armchair
nanoribbons, respectively. Chiral vector Ch specifies the positions
of carbon atoms that are located at edges in nanoribbons, or meet
each other in nanotubes. Ch= �2,2� in this case. Ribbon width �m� is
equal to 2n for �n ,n� zigzag ribbons and n for �n ,0� armchair rib-
bons, respectively.
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The internal-coordinate force constants for nanoribbons
were obtained from those of large PAHs comprising m hon-
eycomb rows. The calculated force constants by the MO/8
model38–42 were transformed into those in the Cartesian co-
ordinates and zone folded for the primitive unit cells by
weighting with the phase factor,

F = 	
n=0

nmax

F�n� cos n� , �2�

where � is the vibrational phase between neighboring units,
F�0� is the force-constant matrix for the primitive unit cell,
and F�n�0� are the matrices describing interactions with the
nth neighbor units. The interaction force constant matrices
were found to be important for the convergence of acoustic
modes to the zero frequency and several optical modes �de-
tails in Appendix E�, although the magnitudes of F�n�0� were
not significantly large. For example, the root mean squares
�rms’s� of diagonal elements of F�n�0� were calculated to be
�10% and �1% of the unit-cell block F�0�, respectively, at
positions of n=5 and 10 in �20� zigzag ribbon. This fact is
due to the group motion of delocalized � electrons. Thus, we
set truncation thresholds for the interaction force constant
matrices at nmax=11 for zigzag ribbons and nmax=5 for arm-
chair ribbons. These thresholds were determined by increas-
ing the size of PAHs from which force constants were ob-
tained. The above thresholds required 21 rings in each row of
PAHs. Thus, PAHs with 21 rings�20 rows were calculated
at maximum. The numerical errors due to the reduced sym-
metries of the finite-size PAHs were adjusted properly in
accordance with the highest symmetries of the primitive
units.

Figure 2 shows the Brillouin zones �BZs� for graphite and
nanoribbons. The regular hexagon represented by the high-
symmetry points of K and M corresponds to the BZ of
graphite, where the �K distance is 4� /3a and
a= 
a1
= 
a2
.51,52 Accordingly, the translation vectors for zig-
zag and armchair ribbons are represented by the linear com-
binations of a1−a2 and a1+a2. Lengths are a and �3a, re-
spectively, and corresponding reciprocal vectors are in the
�K and �M directions. Therefore, BZ for zigzag and arm-

chair ribbons are given by a rectangle of 3K /4�M /2 in Fig.
2, which is circumscribed by the original hexagonal BZ. The
distance between zone center and edges is � /a for zigzag
ribbons,53 which is smaller by a factor of 3 /4 than the �K
distance. That for armchair ribbons is a half of the �M dis-
tance � / �a�3�.

III. RESULTS AND DISCUSSION

A. Dispersion curves of zigzag nanoribbons

Figure 3 presents phonon dispersion curves for zigzag na-
noribbons in a range m=1–5 �a� with and �b� without hydro-
gen atoms as functions of q in comparison with those for
graphite which were determined by electron energy loss
spectroscopy.12 Less-dispersive CH stretches are not shown
here. The norm of primitive wave vector q is equal to the
phase difference � in Eq. �2� divided by the unit translation
in the zigzag direction. The dispersion curves for m=1 in
Fig. 3�a� are almost in good agreement with our previous
results on polyacenes,8 except for the highest longitudinal
optical �LO� mode stemming from �1400 cm−1 at the �
point and the out-of-plane mode in a region of
400–500 cm−1. The highest LO mode displays overbending
�softening� toward the � point, which can be ascribed to the
Kohn anomaly.54 Interestingly, this overbending becomes
smaller upon going to wider ribbons. The EPC over long
distances are effectively involved in the force fields through
bond-bond polarizability �Appendix C�. Since the interaction
matrices F�n�0� included for zone folding in Eq. �2� were
increased from nmax=5 in the previous8 work to nmax=11 in
the present work, long-range forces are described more prop-
erly. The inclusion of long-range interaction matrices will
also create individual sample points near the � point. For
complete treatments of long-range interactions, calculations
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FIG. 2. �Color online� Brillouin zones for graphite �hexagon�
and carbon nanoribbons �rectangle�. High-symmetry points �, K,
M, and � are defined for hexagonal lattices in conventional man-
ners. � is a phase difference between neighboring primitive units
and k is the number of nodes in the width direction for �m� zigzag
nanoribbons. The symmetries of vibrations depend on the parity of
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based on Bloch wave functions would be required. The dis-
crepancies found for the out-of-plane mode, which are
�50 cm−1 at maximum, are likely to be due to the lack of
long-range interaction force constants through the bond-bond
polarizability in the present study.

In analogy with carbon nanotubes,49,50 discrepancies are
anticipated in the force fields of metallic and semiconducting
phases. Since the electric conductivity in one-dimensional
systems is affected by the Peierls instability, the most
straightforward structural indication of the semiconducting
phase would be the alternations of bond distances. Figure 4
shows the calculated bond orders for �a� two-row and �b�
five-row PAHs. No significant bond alternations along the
ribbons imply that the dominant force constants are close to
those in the metallic phase. Similar bond characters have
been obtained by DFT calculations for acene molecules up to
15 rings.8 The bond alternations in the C2h symmetry have
not been obtained either by the Hückel and DFT calculations.
Nonetheless, there remain subtleties as to whether the com-
plete delocalization of � electron is possible in nanoribbons
since the networks of zigzag nanoribbons consist of trans-
polyacetylene chains, which display bond alternations in
neutral states. Spin states are also yet to be investigated for
the nanoscale structures between molecules and bulk materi-
als.

B. Normal modes of carbon nanoribbons

The phonon dispersions of zigzag and armchair nanorib-
bons are reduced into the rectangular BZ, shown in Fig. 2,
and one-dimensional dispersion relations are obtained in re-
peating directions. The symmetry of vibrations and optical
selection rules at the � point �Appendix A� are dependent on
the parity of the repeating unit shown in Fig. 1�b�. All the
normal modes are classified into �1� acoustic modes, �2�
acoustic harmonics, �3� optical harmonics, and �4� CH
modes. In the following, we discuss their vibrational patterns
in connection with their commensurateness with ring struc-
tures.

1. Acoustic modes

The longitudinal �LA� and transverse acoustic �TA�
modes converge to the origin as in Fig. 3. The sound veloci-
ties of the in-plane LA and TA modes in �5� zigzag ribbons
are calculated to be 24 and 20 km /s, respectively, for wave-

lengths much longer than lattice units. These values are
comparable with those of graphite surfaces �24 and
14 km /s�,10,54 in which the TA mode is calculated to be
slower. The small reduced mass of motion in ribbon widths
and/or the high bond orders of diagonal CC bonds �Fig. 4�
are likely to be responsible for this discrepancy.

The number of acoustic modes in nanoribbons is four due
to the fact that rotations perpendicular to the one-
dimensional lattice cannot be represented at the � point. The
in-plane LA and TA modes are relevant to the LA and SH
�shearing� mode of graphite, respectively. The two out-of-
plane acoustic modes converge together onto the ZA �out-of-
plane acoustic in z direction� mode of graphite upon going to
larger m, as depicted by gray lines in Fig. 3. These out-of-
plane acoustic modes possess rotational or translational char-
acters at the � point, respectively. The corresponding acous-
tic modes in dehydrogenated ribbons are calculated to be
�100 cm−1 lower.

2. Acoustic harmonics

All dispersion curves other than the four acoustic modes
are optical branches. The finite width of nanoribbons im-
poses the boundary condition, which gives rise to vibrational
harmonics in the width direction. Figure 5�a� shows a series
of calculated harmonics for �10� zigzag nanoribbons. The
patterns of vibrational amplitudes display significant rel-
evance to those of elastic sheets illustrated in Fig. 5�b�, with
�i� free ends or �ii� fixed ends. The locations of the nodes are
calculated to be independent of ring structures. The atomic
displacements for all of the in-plane modes of zigzag nano-
ribbons were found to have pure T or L characters at the �
point. In this paper, these optical modes are called acoustic
harmonics or elastic harmonics with formal designations
LOk and TOk, where k is the number of nodes
�k=1,2 , . . . ,m�. Their vibrational patterns are intrinsically
correlated to the acoustic modes in the �M dispersion since k
is in proportion to the wave number. Their frequencies do not
converge to the origin at �, as can be seen as k series below
500 cm−1 for m=5 in Fig. 3. The acoustic fundamental
modes of LA and TA literally correspond to LO0 and TO0,
respectively.
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3. Optical harmonics

Figure 6 presents the calculated in-plane modes for �5�
zigzag ribbons at the � point, of which frequencies are de-
picted as outward lines on the left side of Fig. 3�a� for m
=5. The vibrational displacements are calculated to be in
either T or L directions at the � point. The optical modes
without acoustic properties are called optical harmonics in
this paper using primed symbols TO� and LO�. The optical
harmonics display the nodes of displacements within the
primitive unit cells as the vertical lines depicted for TOm� in
Fig. 6�c�, in contrast to the acoustic harmonics shown in
Figs. 6�a� and 6�b�. These antiphase displacements within
units make it difficult to identify the phase relation of k.

When the positions of nodes are commensurate with ring
structures in the width direction, the vibrational patterns are
described by Wilson’s notations for benzene rings.55–57 The
optical harmonics with k=0 and m shown in Figs. 6�c�–6�f�
are commensurate with rings and correlations are found to be
TOm� : 19a, TO0�: 8a, LOm� : 19b, and LO0�: 8b, where 19a /19b
and 8a /8b are degenerate, respectively. The k=0 phase leads
to additive effects in induced dipoles or polarizabilities for
all rings in the unit and gives rise to significant optical ac-
tivities at the � point. Indeed, the strong G� modes of bulk
or nanoscale carbons are ascribed to the TO0� or LO0� modes.
On the other hand, the incommensurate optical harmonics,
TOk� and LOk�, where k=1,2 , . . . ,m−1, are almost indepen-
dent of the ring structures although the positions of nodes are
restricted by CC bonds. For example, the vibrational patterns
calculated for the k=3 modes of TO3� and LO3�, shown in
Figs. 6�g� and 6�h�, display different positions of nodes and
mode mixing between 19a+8a and 19b+8b, respectively.
These optical harmonics LOk� and TOk� are correlated to the
LO and SH* modes of graphite.12

It is noted that the parity of m �or 2m for armchair rib-
bons� gives rise to finite-width effects. In accordance with
the positions of k nodal planes, the vibrational amplitudes of

atomic displacements are located at vertical CC bonds and/or
horizontal CCC junctions within the units. Hence, the exis-
tence or absence of the central hexagonal-ring rows, which
depends on the parity of m, will determine the symmetries of
vibrations. The horizontal positions of hexagonal-ring rows
at both edges are also parity dependent. The edges of odd-m
zigzag ribbons occupy identical positions in the horizontal
direction in Fig. 1�b�, whereas those of even-m zigzag rib-
bons are staggered half a ring. These different edge symme-
tries affect the localization of vibrations at edges and the
inversion degeneracy of vibrations. The vibrational ampli-
tudes at ribbon edges shown in Fig. 5�b� are governed by the
commensurateness with ring structures. If opposite directions
of displacements are constrained by nodal relations and sym-
metries at edges the amplitude is forced to be zero, as shown
in Fig. 6�f�.

The horizontal lines in Fig. 2 �k�0, . . . ,m� illustrate the
phonon dispersions in the �K direction for the m+1 discrete
harmonics over the range of ��.20,22 Another definition of
the primitive unit cell is also possible with the orientation of
the lattice fixed, such as that corresponding to the inclined
rectangle. In this case, all of the m+1 lines are partitioned
differently. The optical harmonics at the upper left M point
display special vibrational patterns since this point are lo-
cated at high-symmetry points for both horizontal and in-
clined BZ zones.

The out-of-plane optical harmonics are also obtained as k
series in frequency regions lower than 600 and �1000 cm−1,
respectively �see m=4 and 5 in Fig. 3�. The lower-frequency
series is assigned to acoustic harmonic series, and the higher-
frequency one is the optical harmonics, which is a boat-type
deformation correlated to the ZO �out-of-plane optical in z
direction� mode of graphite. In general, the vibrational pat-
terns of out-of-plane modes are calculated to appear simpler
than the in-plane modes. The optical harmonics of hydrogen-
ated and dehydrogenated zigzag ribbons are found to be
similar �Figs. 3�a� and 3�b��.

4. CH modes

In-plane and out-of-plane CH bends are calculated to have
small dispersions in regions of 1100–1200 and
900–1000 cm−1, respectively. The two in-plane CH bends
appear like additional lines with small dispersions for larger
m in Fig. 3�a�, whereas these CH bends are absent in Fig.
3�b�. The fact that strong coupling between in-plane CH
bends and CC vibrations was obtained for smaller m is
ascribed to the large H /C ratios in the zigzag ribbons with
m=1–3. The out-of-plane CH bends are calculated to remain
relatively unchanged. Their flatness at 900–1000 cm−1 in
Fig. 3�a� is due to the independence of neighboring CH
bonds in the out-of-plane direction.

C. Width dependences of acoustic and optical harmonics

Figure 7 plots the � point frequencies for the k series of
in-plane harmonics as a function of m for hydrogenated zig-
zag nanoribbons. The number of in-plane normal modes is
4m+8 �given in Appendix A�, all of the in-plane modes are
presented except for CH stretches. The closed symbols de-
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FIG. 6. Normal coordinates calculated for the optical modes of
�5� zigzag nanoribbons at the � point. ��a� and �b�� elastic harmon-
ics of LOk and TOk �k=1,2 , . . . ,m�, respectively. ��c�–�f�� optical
modes that are commensurate with ring structures. ��g� and �h��
incommensurate optical harmonics. �i� CH bending mode.
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note the vibrational phases with maximum �m� or minimum
�0� k values, which are commensurate with ring structures.
The incommensurate modes are depicted by open symbols.
The frequencies of these k harmonics shift systematically in
spite of their incommensurateness. The acoustic harmonics
�unprimed� display greater frequency shifts than those of op-
tical harmonics �primed�. The global motion of the acoustic
modes is likely to be responsible for this result. In general,
the magnitudes of shifts are larger in transverse modes than
in the longitudinal modes. Thus, the transverse G modes as-
sociated with 19a and 8a modes �Figs. 6�c� and 6�d�, respec-
tively� display wider dispersions. The very small frequency
shifts calculated for the CH bends at �1100 cm−1 suggest
their independence.

The wave number in the ribbon width is proportional to
k /m by definition, and frequencies at �k ,m�= �5,10�, for in-
stance, should be similar to those at �10,20�. Deviations from
this wave number relation indicate finite-size effects in
widths or specificities at edges. It is of interest that not only
acoustic harmonics but also the optical harmonics display the
systematic frequency shifts. The LOk� and TOk� series in a
region of 1400–1600 cm−1 stem from mixing between the
19b+8b and 19a+8a modes, respectively �Sec. III B 3�. It is
noted that TOk� gives rise to complicated series at
�1600 cm−1 for m�5 in Fig. 7. The fact that the k=0 ends
in the TOk� series �closed squares� are calculated lower than
the k�0 harmonics �open squares� is likely connected with
the revival overbending in the �M direction for the LO mode
of graphite.11 Namely, the k�0 modes with higher frequen-
cies than the k=0 modes are overlapped twice in the wave
vector region above the k=0 modes. The subtractive series in

terms of the number of rings, k=m,m−1,m−2, . . ., are also
indicated by broken lines in Fig. 7�b�.

Figure 8 presents m dependencies for the acoustic and
optical harmonics of �m� zigzag nanoribbons. The frequen-
cies of the LOk and TOk acoustic harmonics are proportional
to 1 /�m, whereas those of the LO0� and TO0� optical harmon-
ics to 1 /m, suggesting that different mechanics are involved.
In particular, the 1 /�m dependence for the acoustic harmon-
ics is likely to be due to the properties of elastic continua.
The deviations found for the TO0� modes may be related to
the frequency inversions mentioned above. Table II presents
the parameters fitted by regression analyses. The LOk and
TOk acoustic harmonics with larger k numbers display
greater dependences upon ribbon widths m.

As listed in Table I, the number of honeycomb rows in
�m� dehydrogenated zigzag nanoribbons is equal to that in
�m /2,m /2� armchair nanotubes. The nominal diameter cal-
culated by d=�3�am / �2�� �Refs. 51 and 52� is presented
as the upper scales in Fig. 8. The TO0�-LO0� splitting corre-
spond to the G band splitting in the Raman spectra of carbon
nanotubes.49 It is known that empirical fits by the first- or
second-order regression forms like 	
̃G=−C /dn �n=1,2�
give different series for metallic and semiconductor
nanotubes.22,50 The first-order dependence for the splitting is
calculated to be C=165 cm−1 Å for the nanoribbons in a
range d=0.7–13 Å. This dependence is much smaller than
that for metallic nanotubes, C=637 cm−1 Å,22,50 and almost
negligible in zigzag ribbons with m�10. Since the TO� and
LO� modes are degenerated in the regular hexagonal lattice,
the calculated splitting is ascribed to the anisotropy for rib-
bon widths m�10.

D. Dispersion curves of armchair nanoribbons

Figure 9 shows the dispersion curves of �a� hydrogenated
and �b� dehydrogenated nanoribbons of armchair types, re-
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spectively, in comparison with those of graphite.11 The �M
dispersions of graphite are folded into the half Brillouin zone
of ��, as shown in Fig. 2. The hydrogen atoms give rise to
the dispersion curves of in-plane and out-of-plane CH bends
at 1150 and 950 cm−1, respectively, and do not cause signifi- cant changes. The small magnitudes of frequency shifts are

due to the small distance of �� or the long unit distances in
real space, which emphasize the independence of ring struc-
tures. Folding back the dispersion curves of graphite at �
makes positive slopes to negative ones. Correspondingly, the
ZA, SH, and LA modes of graphite show negative slopes and
the ZO, SH*, and LO modes positive ones. These inversions
are remarkably reproduced in the dispersion curves of nan-
oribbons.

E. Infrared and Raman activity

Figure 10 presents the infrared and nonresonant Raman
spectra calculated for finite-size PAHs with zigzag and arm-
chair edges at the B3LYP /4-31G�d� level of density func-
tional theory using the GAUSSIAN 03 program.58 The strongest
infrared bands are assigned to out-of-plane CH bends shown
in Fig. 10�a�, which are commonly observed for PAHs.35,36

The calculated Raman spectra are in line with the previous
study at the BLYP/6-31G level by Negri et al.59 Since the
longitudinal and transverse directions are interchanged be-
tween zigzag and armchair ribbons, we use notations 8a and
8b �Refs. 55–57� which are correlated with TO0� and LO0� in
zigzag ribbons, respectively, and LO0� and TO0� in armchair
ribbons. Modes 8b and 8a give rise to the strongest G bands
for the zigzag and armchair PAHs, respectively, in Fig. 10�b�.
Both of the G modes are correlated to the LO0� modes in

TABLE II. Parameters fitted to the frequencies of elastic and
optical harmonics of zigzag nanoribbons.

k

LOk: 
=a+b /�m TOk: 
=a+b /�m

a
�cm−1�

b
�cm−1�

a
�cm−1�

b
�cm−1�

1 −76 547 −121 866
2 −148 1065 −242 1709
3 −194 1493 −320 2408
4 −226 1861 −379 3028
5 −247 2177 −424 3579
6 −256 2437 −460 4084
7 −259 2657 −484 4533
8 −250 2824 −500 4935
9 −234 2953 −507 5290

10 −243 3171 −522 5663
11 −177 3069 −506 5899
12 −225 3432 −534 6303
13 −156 3290 −499 6435
14 −55 2993 −456 6519
15 −74 3195 −482 6878

LO0�: 
=a�+b� /m TO0�: 
=a�+b� /m

k
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zigzag and armchair nanoribbons. Table III compares the cal-
culated Raman bands for zigzag and armchair nanoribbons
with the experimentally determined Raman bands for
graphite,60,61 carbon nanotubes �CNTs�,50 and PAHs.7 The
splitting of G mode is calculated to be slightly larger in �10�
armchair ribbon than in �20� zigzag ribbon.

It is widely accepted that the origin of the D bands at
�1350 cm−1 is due to totally symmetric modes with breath-
ing characters which are activated by superlattices originat-
ing from defects or boundary edges.7,62,63 The totally sym-
metric modes obtained as modes B, C, and D in Fig. 10
indeed give rise to strong Raman bands for finite-size
PAHs.59 However, the breathinglike modes are obtained only
at zone edges for zigzag and armchair nanoribbons. The po-
tential candidates for the D modes were chosen from the
�-point modes of nanoribbons in the range of
1300–1400 cm−1 in Table III and Fig. 10�c�. The vibrational
patterns of these optical modes �i�–�iii� are significantly dif-
ferent from those of finite-size PAHs in that optical displace-
ments in the units are exactly repeated. Moreover, all of
modes �i�–�ii� in zigzag ribbons display opposite displace-
ments within the repeating units at equivalent CC bonds or
CCC angles, and modes �i�–�iii� in armchair ribbons also
show opposite displacements between vertical honeycomb
rows. Hence, resultant cancellation effects by the balanced
displacements would lead to weak nonresonant Raman inten-
sities from carbon networks in nanoribbons.

In-plane CH bends can couple with ring vibrations as cal-
culated for modes B and D in the finite PAHs in Fig. 10 and
several larger PAHs with armchair edges.59 However, the
strong Raman activities are due to vibrations of carbon moi-
eties in these cases, and significant changes of molecular
volumes are also involved. Conversely, in the case of nanor-
ibbons, the additional dispersion curves from in-plane CH
bends are relatively unchanged at �1150 cm−1, particularly

in wider ribbons �Figs. 3�a� and 9�a��. The changes of vol-
umes are not expected due to the �=0 condition at the �
point. Therefore, nonresonant Raman intensities could be ac-
tivated in a region �1350 cm−1 only by displacements local-
ized at finite lengths or edges.

The resonance Raman effects have been observed and cal-
culated for the bond-alternating vibrations of Kekulé type
�similar to mode D in Fig. 10�, totally symmetric CH bends,
and mode 8b �similar to mode G in Fig. 10� for linear PAHs
of zigzag types.8 The Kekulé-type vibrations �mode 14 of
benzene�55–57 are also obtained as mode �ii� of armchair rib-
bons. These facts indicate that CH bending modes and
Kekulé vibrations could give rise to strong Raman intensities
through the resonance Raman effects. In particular, the
�-point modes in armchair ribbons are not separated into
longitudinal and transverse modes, and therefore can Kekulé
vibrations can appear at the � point.

F. Edge-localized vibrations

The boundary conditions imposed by finite ribbon widths
lead to special edge-localized states, such as those electronic
states localized at zigzag edges.17,18 In this work, localization
of vibrations was calculated to take place only in armchair
ribbons. The edge-localized modes are obtained in hydrogen-
ated and dehydrogenated analogs at �680–700 cm−1 over
one or two rings from edges, whereas inner-localized modes
are also calculated as modes �i� and �iii� in Fig. 10�c�. The
edge structures have been well studied for PAHs in connec-
tion with the periphery shapes of ring structures.27,64 In par-
ticular, the out-of-plane CH bends is known to be a marker
of the perimeters of PAHs in infrared spectra. The CH bonds
are categorized according to the number of adjacent CH
bonds. A general tendency of frequencies is solo �nonadja-
cent CH bonds�: �900 cm−1, duo �doubly adjacent CH

TABLE III. Observable vibrational frequencies �cm−1� in carbon nanoribbons and nanotubes, graphite, and PAHs comprising 7–50
rings.

Mode

Calc. Expt.

Zigzag
�10,10�c

Armchair
�10,0�c

CNTa

�15,2� Graphite

PAHb

7d 13 20 24 27 34 50

G 1550 1565 1590 1575,1581e 1627 1604 1601 1603 1597 1603 1597
1545 1544 1560

D 1379f 1364g 1355h 1349 1304 1334 1339 1333 1316 1310
1358g 1333f 1262 1260 1253 1261 1253 1236

Out of plane 868i

aRaman bands at 488.0 nm excitation. Taken from Ref. 50.
bReference 7.
cThe �10,10� and �10,0� chiral vectors correspond to �20� zigzag and �10� armchair nanoribbons, respectively.
dThe number of rings.
eRaman bands of highly oriented pyrolytic graphite taken from Refs. 62 and 61, respectively. This mode shows frequency shifts and becomes
infrared active upon grinding �Ref. 60�.
fSuperlattices are not assumed. Vertical CC stretches �see Fig. 10�c��.
gSuperlattices are not assumed. Close to mode 19a.
hReference 62.
iReference 61.

YAMADA, YAMAKITA, AND OHNO PHYSICAL REVIEW B 77, 054302 �2008�

054302-8



bonds�: 800–850 cm−1, trio �three CH groups�: �760 cm−1,
and quartet �four CH bonds�: 740 cm−1.64 The out-of-plane
CH bends in nanoribbons are calculated to match this ten-
dency, solo CH groups in zigzag ribbons and duo CH groups
in armchair ribbons appear at 950 and 840 cm−1, respectively
�Figs. 3�a� and 8�a��. Therefore, the hydrogenated edges of
zigzag or armchair types can be determined in principle by
the localized Raman modes of Kekulé type or the infrared-
active out-of-plane CH bends.

G. Density of states

Figure 11 shows the density of states �DOS� for zigzag
and armchair nanoribbons with edges hydrogenated and de-
hydrogenated, respectively. The bunches of peaks are ob-
tained almost selectively for zigzag ribbons at �1400 and
�400 cm−1. Contributions from CH bonds are distinguished
by comparing the hydrogenated and dehydrogenated ribbons.
The out-of-plane CH bends give rise to peaks at
850–950 cm−1 for the solo CH bonds in hydrogenated zig-
zag ribbons and a sharp peak at 980 cm−1 for the duo CH
bonds in armchair ribbons, whereas the in-plane CH bends
are overlapped by other peaks. It should be recalled that
peaks in DOS represent the averaged frequencies over q.

Figure 12 presents the DOS of in-plane and out-of-plane
modes for three types of PAHs with linear, round, and rect-
angular periphery. The linear PAH displays peaks at �400
and �900 cm−1, which are assigned to boat deformations
and out-of-plane CH bends, respectively. The round PAH
does not show similar peaks, whereas the rectangular one
displays marginally. It follows that the two DOS peaks are
unique for linear PAHs. Similar DOS peaks are obtained for

hydrogenated zigzag ribbons only �Fig. 11�a��. Hence, the
origins of these peaks are likely to be connected with the
translational symmetry of zigzag type.

IV. CONCLUSIONS

In the phonon dispersion curves of carbon nanoribbons of
zigzag and armchair types, all normal modes give rise to
acoustic or optical harmonics in systematic propensities. The
MO/8 force fields, which are applicable to arbitrary PAHs
larger than 400 rings, can be transferred to repeating struc-
tures by the zone-folding method. The molecular-
spectroscopic approach presented in this paper can bridge
molecular vibrations and phonons of solids, in which peri-
odic and local structures can be investigated. The fact that
experimental data for different kinds of PAHs are reproduced
�Ref. 42, Appendixes C and D� is promising since any kind
of nanoscale carbons can be studied. In particular, high-
performance computers can allow us to calculate more so-
phisticated properties of nanoscale carbons, such as the reso-
nance Raman effect8 and vibronic coupling at the excited
states.42
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APPENDIX A: IRREDUCIBLE REPRESENTATIONS

Table IV presents symmetry properties and vibrational se-
lection rules for zigzag and armchair hydrogenated ribbons,
which depend on the parity of m �zigzag� or 2m �armchair�.
The point groups for the primitive unit cells of zigzag rib-
bons are C2v �even m� or C2h �odd m�, whereas those for
armchair ribbons are D2h �integer m� or C2v �half-integer m�,
respectively. The selection rules for infrared and Raman tran-
sitions are derived from the irreducible representations at the
� point, which can be decomposed into in-plane and out-of-
plane vibrations. The existence of the inversion center in the
unit cell results in the mutual exclusivity rule. These �-point
symmetries are not valid when the wave vector of phonon q
is nonzero. Instead, the factor group of total lattices will
determine selection rules for q-sensitive phenomena and
crossing-anticrossing conditions for dispersion curves.

APPENDIX B: INTERNAL COORDINATES

Figure 13 illustrates the internal coordinates employed in
this work. They were defined in a conventional manner65 for
stretching �Ri and rj�, bending ��k−�k��, out-of-plane dis-

placement ��l�, and torsional �tm� vibrations. The advantages
of the internal coordinates over the Cartesian-based coordi-
nates are related to the nature of chemical bonding. Vibra-
tional properties such as force constants are in general asso-
ciated with chemical bonds and can be represented directly
by the internal coordinates. The drawbacks were the arbi-
trariness of choosing internal coordinates and redundancy. In
this work, redundant coordinates for angles �k−�k� were
eliminated by setting up two orthonormal linear combina-
tions of 	�k−	�k� as local symmetry coordinates,56 and
those associated with rings were reduced by transforming the
secular equation to a symmetric form by Miyazawa’s
method.66

APPENDIX C: IN-PLANE MODES

In-plane vibrations involving stretches and bends were
calculated based on the force-field model which we call the
MO/8 model.38–42 The predictivity of this model has been
confirmed for a test set of PAHs comprising up to 12 rings
�benzene, naphthalene, anthracene, naphthacene, pyrene,
triphenylene, pentacene, perylene, benzo�g ,h , i�perylene,
coronene, ovalene, tribenzo�a ,g ,m�coronene, and kekuléne�.
The resultant rms frequency errors have been found to be
only �20 cm−1, i.e., �3%.42 The qualities of the calculated
normal coordinates have also been found to be as reliable as
DFT calculations.67 Systematic tendencies for the nanoscale
honeycomb networks could be gained with non-ab initio cal-
culations. A short computational time allows us to perform
calculations for sophisticated properties such as vibronic
bands for electronically excited states42 and resonance Ra-
man effects.8

Details for the MO/8 model are given in Refs. 38–42.
Briefly, the force constants for Ri are calculated based on the
bond orders �BOs� and bond-bond polarizabilities �BBPs�,
which describe the long-range coupling of CC stretches
through the motion of � electrons. The diagonal and off-
diagonal force constants are obtained as

TABLE IV. Symmetry of vibrations for the primitive unit cells in �m� carbon nanoribbons.

�n ,n� zigzag ribbon �n ,0� armchair ribbon

ma Sym. Infrared Raman ma Sym. Infrared Raman

Odd C2v �ip= �2m+4�a1 a a Half integer D2h �ip= �2m+4�ag a
�2m+4�b2 a a �2m+4�b3g a

�op= �m+2�b1 a a �2m+4�b1u a
�m+2�a2 a �2m+4�b2u a

�op= �m+5 /2�b1g a
�m+3 /2�b2g a
�m+3 /2�au

�m+5 /2�b3u a

Even C2h �ip= �2m+4�ag a Integer C2v �ip= �4m+8�a1 a a
�2m+4�bu a �4m+8�b2 a a

�op= �m+2�bg a �op= �2m+4�b1 a a
�m+2�au a �2m+4�a2 a

am is defined by the number of rows �see Fig. 1�b� and Table I�.
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k

FIG. 13. In-plane and out-of-plane internal coordinates.
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Fii�CC� = f1 + f2�Pi − P0� + f3�
ii − 
0� , �C1�

Fij�CC/CC� = f3
ij �i � j� , �C2�

where Pi is BO for ith CC bond and 
ij is BBP between ith
and jth CC bonds, and P0 and 
0 are those for benzene as
standard. Other force constants are set to be constant: f4
=F�CH�, f5=F�CCC�, f6=F�CCH�, f7=F�CC /CCC�, and
f8=F�CC /CCC�. These eight parameters are chosen as the
averages of those optimized independently for five kinds of
PAHs �benzene, naphthalene, anthracene, pyrene, and triph-
enylene�, being f1=6.821, f2=5.450, f3=3.646, f4=5.072,
f5=0.928, f6=0.504, f7=0.430, and f8=0.199 in the appro-
priate units either of 102 N m−1, 10−18 N m rad−2,
10−8 N rad−1, or 102� N m−1, respectively. Pi between atoms
a and b and 
ij are obtained from molecular orbital calcula-
tions of Hückel theory with resonance energy �=−1,

Pi = 2	
k

occ

CkaCkb, �C3�


ij = �Pi/�� j , �C4�

where Cka are the kth MO coefficient for atom a, and the
summation of k runs over the occupied orbitals. The MO
coefficients were obtained from the secular determinants rep-
resented based on

Coulomb integral:

�a =� �
a
*h�ad� , �C5�

resonance integral:

�ab =� �
a
*h�bd� �a � b� , �C6�

overlap integral:

Sab =� �
a
*�bd� �C7�

for � orbitals. All Coulomb integrals were set to be constant
and normalized by resonance integrals between adjacent C

atoms, which were set to be a parameter �. Overlap integrals
were neglected. The perturbation theory treatments derived
by Coulson and Longuet-Higgins43–46 allow us to calculate

ij from �Cka� in a short computational time. For example,
the computation of force fields for a PAH with 380 rings
takes �20 h on a single Pentium®-based personal computer.
This computational time could be significantly reduced by
utilizing high-performance computes. The geometrical struc-
tures are assumed to be regular hexagons with CC distance
of benzene, 1.397 Å, and capped by CH bonds of 1.084 Å.68

The resultant lattice constant is a=2.420 Å, which is slightly
shorter than the experimental value for graphite, 2.478 Å
�Ref. 69�. Geometrical deviations from the above CC dis-
tance deviations are effectively involved in the diagonal CC
force constant in Eq. �C1�.

APPENDIX D: OUT-OF-PLANE VIBRATIONS

Out-of-plane vibrations were calculated by modifying the
model reported by Cyvin et al.70,71 The force constants were
the same, but regular hexagons were assumed. The rms error
between the calculated and experimental frequencies of
PAHs �naphthalene, anthracene, coronene, and kekuléne�
was calculated to be 24.2 cm−1, whereas it was 22.5 cm−1

when the hexagons were distorted using the bond order.70,71

In general, interaction force constants for carbons at distant
positions play an important role in the delocalized � elec-
trons, and geometrical structures can be regarded as circum-
stantial properties which are determined by such interactions.

APPENDIX E: LONG-RANGE INTERACTION

In the zone-folding procedures, long-range interactions
were included through off-diagonal force constants, F�n�0� in
Eq. �2�. Table V shows calculated frequencies when varying
the length �n� of PAHs from which force constants were
obtained and the truncation thresholds �nmax� for the range of
interactions. Beyond nmax�6 the frequencies become con-
stant and acoustic modes converge to the zero frequency.
Hence, we employed n=21 and nmax=11 in this paper.

TABLE V. Calculated frequencies �cm−1� for the in-plane modes of �2� zigzag ribbons at � point using force constants taken from a PAH
with 2 rows�n rings. Interactions between up to the nmaxth neighbors are included.

n 7 9 11 13 15 21

nmax 4 5 6 7 4 5 6 7 8 5 6 10 11

mode 3 1561 1559 1558 1557 1556 1556 1556 1557 1557 1556 1556 1556 1556

mode 4 1506 1487 1474 1470 1474 1470 1470 1470 1470 1470 1470 1470 1470

mode 5 1475 1472 1471 1466 1470 1463 1463 1461 1460 1460 1456 1450 1449

mode 15 41 29 19 11 24 18 18 12 7 23 17 4 3

mode 16 16 11 8 6 21 9 9 6 5 14 10 3 3
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